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Abstract

We report on a study of the finite-temperature QCD transition region for temperatures

between 139 and 196 MeV, with a pion mass of 200 MeV and two space-time volumes:

243×8 and 323×8, where the larger volume varies in linear size between 5.6 fm (at T=139

MeV) and 4.0 fm (at T=195 MeV). These results are compared with the results of an earlier

calculation using the same action and quark masses but a smaller, 163×8 volume. The chiral

domain wall fermion formulation with a combined Iwasaki and dislocation suppressing

determinant ratio gauge action are used. This lattice action accurately reproduces the

SU(2)L × SU(2)R and U(1)A symmetries of the continuum. Results are reported for the

chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue

spectrum. We find a pseudo-critical temperature, Tc, of approximately 165 MeV consistent

with previous results and strong finite volume dependence below Tc. Clear evidence is seen

for U(1)A symmetry breaking above Tc which is quantitatively explained by the measured

density of near-zero modes in accordance with the dilute instanton gas approximation.

PACS numbers: 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

The QCD phase transition, separating the low-temperature phase in which the

(approximate) SU(2)L × SU(2)R symmetry of QCD with two light flavors is broken

by the vacuum and the high-temperature phase in which this symmetry is restored,

has been the subject of active experimental and theoretical study for more than 30

years. The present expectation is that this is a second-order transition belonging to

the O(4) universality class when the up and down quark masses are zero [1] and a

possibly rapid cross-over for non-zero, physical light quark mass.

However, the order of the transition may depend on the degree to which the

anomalous U(1)A symmetry is realized in QCD. As pointed out in Ref. [1], if the

U(1)A breaking is significant near the phase transition, then the resulting four mass-

less degrees of freedom (~π and σ) can support O(4) critical behavior at Tc, the

location of the phase transition. However, if anomalous breaking of the U(1)A is

small so there are eight light degrees of freedom at Tc (~π, σ, ~δ and η) then the chiral

transition is expected to be first order, although a second order phase transition

may still be permitted with a different SU(2)L × SU(2)R/U(2)V universality class

as suggested in Refs. [2, 3]. Thus, a thorough study of the behavior of the anoma-

lous U(1)A symmetry has essential consequences on the nature of the chiral phase

transition. (For a recent investigation of this question using an effective Lagrangian

approach see Ref. [4].)

In this paper we study the temperature region 139 MeV ≤ T ≤ 195 MeV using

chiral, domain wall fermions (DWF) with a lattice volume having a fixed time extent

of 8 in lattice units and a spatial volume of either 243 or 323. The temperature

is varied by varying the inverse gauge coupling β between 1.633 and 1.829 using

the Iwasaki gauge action combined with a dislocation suppressing determinant ratio

(DSDR) [5–8] to reduce the effects of residual chiral symmetry breaking at these
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relatively strong couplings. The light quark mass is chosen so that the pion mass is

held fixed at a heavier-than-physical 200 MeV value while the strange quark mass

is set to its physical value. This calculation extends previous work [9] that used the

same action and studied the same quark masses and temperatures but used a smaller

163 × 8 volume.

While the QCD phase transition has been extensively studied using the staggered

formulation of lattice fermions, calculations employing chiral fermions are more dif-

ficult and less frequent [9–13]. However, in contrast to the staggered formulation in

which finite lattice spacing effects explicitly break the anomalous U(1)A symmetry

and all but one of the six SU(2)L × SU(2)R symmetry directions, the DWF formu-

lation accurately reproduces these symmetries. At low temperatures one finds three

degenerate light pions and the U(1)A current obeys an anomalous conservation law

identical to that in the continuum up to small, controlled residual chiral symmetry

breaking effects.

We will now briefly summarize our results. The disconnected chiral susceptibility

χdisc shows a dramatic peak as the temperature increases through the critical region.

This is the quantity of choice for locating the pseudo-critical temperature and showed

a quite broad peak when studied earlier on the 163 × 8 volume. The 243 and 323

results presented here show a significant volume dependence with the large shoulder

just below Tc decreasing by between 30 and 50% as the volume is increased and the

peak itself moving to higher temperature and decreasing in height by approximately

15%. The 243 and 323 volumes give similar results. This behavior is predicted by

finite size scaling in O(4) models in the presence of an external symmetry breaking

field [14] and could be anticipated from the first comparison made with QCD data

[15] and the recent work of Braun et al. [16].

We investigate U(1)A symmetry breaking above Tc by examining the two U(1)A

symmetry breaking differences χπ−χδ and χσ−χη. These vanish if U(1)A symmetry
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is realized and are clearly non-zero at T = 177 MeV, although they decrease quickly

as T is increased above this value. These two quantities are related by SU(2)L ×

SU(2)R symmetry and are equal within errors for T ≥ 177 MeV. We conclude that

for temperatures at which SU(2)L × SU(2)R symmetry has been restored, U(1)A

symmetry breaking is still present.

The Dirac eigenvalue spectra per unit space-time volume seen on the 163 × 8

and 323 × 8 volumes are very similar. However, the larger volume results are more

accurate in the region of small eigenvalues. We find that appropriately convergent

combinations of spectral integrals agree well with the observed Green’s functions to

which they are related in continuum field theory. Of particular importance is the

agreement between a spectral integral and χπ − χδ. For T = 177 MeV we find a

small cluster of near-zero Dirac eigenvalues, such as are expected from the dilute

instanton gas approximation (DIGA) [17, 18] and it is these eigenvalues which, when

included in the spectral formula, reproduce the measured result for χπ − χδ. This

relation continues to hold, although within larger errors, at T = 186 and 195 MeV.

The number of these near-zero modes is found to be proportional to the volume and

their chiralities show a mixture of positive and negative values per configuration, as

is expected in the DIGA. We conclude that U(1)A symmetry is broken in the region

immediately above Tc and this breaking is explained by the DIGA. No additional

mechanism is necessary.

In addition to these physics results, we also present two technical improvements to

the study of finite temperature phenomena using DWF. The first is an improved ob-

servable representing the chiral condensate, 〈ψlψl〉. This new quantity, the difference

of light and strange quark chiral susceptibilites, is equivalent in the continuum to

the usual difference of light and strange quark condensates but does not contain the

residual chiral symmetry breaking ambiguities present in the usual DWF evaluation

of such a difference. The second development is the recognition that the quantities
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usually computed when evaluating susceptiblities and computing residual DWF chi-

ral symmetry breaking, and hence fundamental to this and earlier calculations, are

related by an exact DWF Ward identity and the demonstration that this relation is

satisfied.

This paper is organized as follows. Section II briefly describes the lattice formu-

lation used, ensembles generated and the input parameters chosen. In Sec. III, we

introduce a variety of observables that are associated with the SU(2)L×SU(2)R and

U(1)A symmetries and review their properties and the symmetry relations that con-

nect them. We present and discuss the results for these observables over our 139−195

MeV temperature range. Section IV gives results for the low-lying eigenvalue spec-

trum of the Dirac operator and examines the relations between this spectrum and

various measures of the chiral condensate and χπ − χδ. Finally in Sec. V, we sum-

marize our results and compare with earlier work.

II. ENSEMBLE DETAILS

In this calculation we extend the 163 × 8 results reported in Ref. [9] to larger

243× 8 and 323× 8 volumes, keeping all other parameters fixed. We therefore adopt

the same Iwasaki gauge action augmented with dislocation suppression determinant

ratio (DSDR) [6–8] and the domain wall fermion (DWF) action with 2 + 1 flavors.

With this choice of action, we are able to simulate a relatively light pion mass and

to accurately respect the important continuum chiral and U(1)A symmetries.

Table I lists the basic parameters for these three sets of ensembles. The first

two sets of ensembles are new and reported here for the first time, with space-time

volumes of 323 × 8 and 243 × 8 respectively. The third set of ensembles, with lattice

volume 163× 8, was studied extensively in Ref. [9] and is listed here (with improved

statistics at T =195 MeV (run # 21)) for comparison and later reference.
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The input light quark masses are adjusted so that all the ensembles lie on a

line of constant physics with mπ ≈ 200 MeV and the ratio m̃l/m̃s = 0.088 is fixed

to ensure a kaon with physical mass. Here and later in the text, a tilde indicates

the total bare quark mass, given by the sum of the input and the residual quark

masses m̃ = minput + mres, where the residual mass, mres is the small additive shift

to the input quark mass that results from the residual chiral symmetry breaking

with DWF with a finite extent Ls in the fifth dimension. A detailed description of

the determination of the line of constant physics can be found in Ref. [9]. Here we

recalculate the pion masses at each temperature from updated values of the residual

mass computed on the 323 × 8 and 243 × 8 ensembles. As can be seen in column

nine of Tab. I, in all but one case these new values for mπ lie within 3% of the target

value of 200 MeV. Determined as it is here from the sum of input and residual light

quark masses and the assumed linearity of m2
π on this sum, the pion mass should

be independent of the volume and difference of the calculated pion masses between

different volumes can be regarded as a measure of systematic errors.

Because of the rapidly increasing residual mass with decreasing temperature, for

the two lowest temperature ensembles (T = 139 and 149 MeV), we use a negative

input quark mass. While much larger negative input quark masses are standard

for Wilson fermion calculations, the use of negative minput is uncommon in a DWF

calculation and, as in the Wilson case, could potentially jeopardize the stability of

the evolution because of a singularity in the Dirac operator. Fortunately, we observed

no such ”exceptional configurations” in any of our evolutions. This use of a negative

input quark mass was tested in a study reported in Ref. [9] where two streams at

T = 149 MeV with a 163 × 8 volume were generated: one with Ls = 32 and a

negative input quark mass (run # 15 in Tab. I) and a second with Ls = 48 and a

positive input quark mass (run # 16 in Tab. I), adjusted to give the same value of m̃l.

Both ensembles gave consistent results for all the quantities we computed, providing
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strong support that our interpretation of m̃l and choice of negative input quark mass

is solid and correct.

The number of effective trajectories for each ensemble that are used in the mea-

surement reported later is also in the right-most column of Table I. For ensembles

with volume 163 × 8 and 323 × 8, we discard the first 300 trajectories to account for

thermalization. However, because we changed the evolution algorithm during the

early stages of the generation of the 243 × 8 ensembles, a larger number of initial

trajectories were discarded for those. For each ensemble a trajectory has a length of

one molecular dynamics time unit.

In order to increase the statistics, we have evolved multiple streams for ensem-

bles run # 9 and run # 10. Ensemble run # 9 is composed of 8 streams, two of

which began from an ordered start, another two from a disordered start and the

remaining four were split from the previous four streams after thermalization. En-

semble run # 10 is composed of two streams one beginning from an ordered and the

other from a disordered configuration. The multiple streams in each ensemble are

pooled together after removing an initial 300 trajectories from each stream which

began with an ordered or disordered start. For streams that were split from a previ-

ously thermalized stream, the first 100 trajectories of that new stream are discarded

to insure that the new stream is not correlated with its parent.

We do not adopt a single set of units in this paper. When dimensionful quantities

are given in physical units, such as MeV, the unit used will be specified. However,

when expressed in lattice units, often no explicit unit will be written. Occasionally,

for clarity or emphasis, explicit powers of the lattice spacing will be shown, with the

power given by the length dimension of the quantity being described.
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# T (MeV) β Nσ Nτ Ls ml ms mres mπ(MeV) N equil
traj

1 139(6) 1.633 32 8 48 -0.00136 0.0519 0.00657(2) 205(8) 2700

2 149(5) 1.671 32 8 32 -0.00189 0.0464 0.00653(2) 201(5) 2700

3 159(4) 1.707 32 8 32 0.000551 0.0449 0.00366(2) 200(3) 2643

4 164(4) 1.725 32 8 32 0.00138 0.0436 0.00277(1) 202(3) 2700

5 168(4) 1.740 32 8 32 0.00175 0.0427 0.00220(2) 200(2) 2708

6 177(4) 1.771 32 8 32 0.00232 0.0403 0.00135(1) 198(2) 2700

7 186(5) 1.801 32 8 32 0.00258 0.0379 0.00083(2) 197(3) 2729

8 195(6) 1.829 32 8 32 0.00265 0.0357 0.00049(1) 195(4) 3112

9 149(5) 1.671 24 8 32 -0.00189 0.0464 0.00659(6) 202(5) 4721

10 159(4) 1.707 24 8 32 0.000551 0.0449 0.00370(4) 200(3) 2265

11 168(4) 1.740 24 8 32 0.00175 0.0427 0.00216(3) 199(2) 2423

12 177(4) 1.771 24 8 32 0.00232 0.0403 0.00129(3) 197(2) 2892

13 186(5) 1.801 24 8 32 0.00258 0.0379 0.00084(3) 197(3) 3142

14 139(6) 1.633 16 8 48 -0.00136 0.0519 0.00588(39) 191(7) 2696

15 149(5) 1.671 16 8 32 -0.00189 0.0464 0.00643(9) 199(5) 5700

16 149(5) 1.671 16 8 48 0.00173 0.0500 0.00295(3) 202(5) 6700

17 159(4) 1.707 16 8 32 0.000551 0.0449 0.00377(11) 202(3) 3359

18 168(4) 1.740 16 8 32 0.00175 0.0427 0.00209(9) 197(2) 3043

19 177(4) 1.771 16 8 32 0.00232 0.0403 0.00132(6) 198(2) 3240

20 186(5) 1.801 16 8 32 0.00258 0.0379 0.00076(3) 195(3) 4415

21 195(6) 1.829 16 8 32 0.00265 0.0357 0.00047(1) 194(4) 8830

TABLE I. Summary of input parameters (β, Nσ, Nτ , Ls, ml and ms) and the measured

result for mres for each ensembles. Each is assigned a label in the first column for later

reference. The final N equil
traj column lists the number of equilibrated trajectories that remain

after the imposition of the thermalization and decorrelation cuts described in the text.
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III. CHIRAL OBSERVABLES

In this Section we will discuss Green’s functions constructed from the eight scalar

and pseudoscalar operators: ψlψl, ψlτ
iψl, ψlγ

5ψl, ψlτ
iγ5ψl. Here ψl is a doublet of

up and down quark fields and {τi}1≤i≤3 the usual Pauli matrices. These operators

are related by the SU(2)L × SU(2)R chiral symmetry of QCD and the anomalously

broken U(1)A symmetry. In Sec. III A we review the relations among these eight

operators and their Green’s functions implied by the SU(2)L × SU(2)R and U(1)A

symmetries, paying particular attention to the degree to which these relations should

hold at finite lattice spacing for the DWF formulation.

In Sec. III B we present our numerical results, focusing on those relations implied

by SU(2)×SU(2) chiral symmetry and examining their dependence on temperature.

In the final subsection, Sec. III C, we examine the relations implied by U(1)A symme-

try, including evidence for non-zero anomalous, U(1)A symmetry breaking above the

pseudo-critical temperature Tc, a non-vanishing asymmetry which disappears rapidly

as the temperature increases above Tc.

A. Preliminaries

In this section, we present a brief review of a variety of chiral observables and the

relations among them implied by the SU(2)L × SU(2)R and U(1)A symmetries. A

more detailed description can be found in Ref. [9].

The standard order parameter for the chiral phase transition is the single-flavor,
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light-quark chiral condensate,

Σl ≡ −
1

2

〈
ψlψl

〉
(1)

=
1

2

T

V

∂ lnZ

∂ml

(2)

=
1

N3
σNτ

〈
TrM−1

l

〉
, (3)

where Ml is the single-flavor, light-quark Dirac matrix and the brackets 〈. . .〉 in

the bottom equation indicate an average over gauge fields. However, this quantity

contains an ultraviolet divergent contribution that is proportional to mq/a
2 for the

case of a lattice regularization. In order to remove this ultraviolet divergence, it is

standard to introduce a subtracted chiral condensate constructed from a weighted

difference between the chiral condensates of the light and strange quarks [19]:

∆l,s = Σl −
m̃l

m̃s

Σs. (4)

Here Σs is defined using the strange quark Dirac matrix in a manner analogous to

Eq. (3). For domain wall fermions there is a further difficulty associated with the

short distance contributions to Σq and the subtracted quantity ∆l,s. For a finite fifth

dimensional extent, Ls < ∞, the DWF chiral symmetry is only approximate and

residual chirally symmetry breaking effects appear. The largest such effect is a small

additive shift in the quark mass: the residual mass mres mentioned above. Similar

residual chiral breaking will appear in Σq and will be of order mres/a
2 if we express

mres in physical units. However, since the detailed mechanism which generates the

residual mass is not directly related to that which introduces the additive constant

into Σq, the subtraction coefficient α that would be needed to remove both the mq/a
2

and the O(mres/a
2) terms in Σl − αΣs is not known.

Thus, the subtracted quantity ∆l,s defined in Eq. (4) will contain an unphysical,

O(mres/a
2) constant which will decrease the utility of ∆l,s computed in a DWF
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simulation. In particular, we cannot compare ∆l,s with the same difference of chiral

condensates obtained from other lattice fermion formulations. While this added

unphysical constant does not depend on temperature, it does depend strongly on

the gauge coupling g so the usual procedure of varying the temperature by varying

g at fixed Nτ will induce an apparent temperature dependence in this unphysical

contribution to ∆l,s. However, the definition of ∆l,s given in Eq. (4) (which differs

from that used in the earlier paper [9]) does have a useful property. As is discussed

in Sec. IV, this subtraction using for α the physical quark mass ratio, α = m̃l/m̃s

will lead to a more convergent spectral expression for ∆l,s.

Results for the quantities Σl, Σs and ∆l,s are given in Tab. III. For each configu-

ration used in the calculation, the volume-averaged, chiral condensate is computed

from the right hand side of Eq. (3), using 10 Gaussian random volume sources to

estimate the trace. In Sec. III we will use the Gell-Mann-Oakes-Renner (GMOR)

relation to define an improved, subtracted chiral condensate ∆̃l,s, which contains a

much smaller unknown correction and can be compared with the results from other

formulations of lattice fermions.

The chiral condensate Σl and the various subtracted versions discussed above can

be used to explore the vacuum breaking of SU(2)L×SU(2)R and U(1)A symmetry and

their restoration (or partial restoration) as the temperature is increased. However,

much more information can be obtained from the susceptibilities defined as integrated

correlation functions of the eight local operators,

σ = ψlψl (5)

δi = ψlτ
iψl (6)

η = iψlγ
5ψl (7)

πi = iψlτ
iγ5ψl. (8)

Such susceptibilities are both much more sensitive to the transition from the ordered
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to the disordered state and also allow independent measures of SU(2)L × SU(2)R

and U(1)A symmetry breaking. The operator quadruplets (σ, πi) and (η, δi) each

transform as an irreducible 4-dimensional representation of SU(2)L × SU(2)R. The

four pairs, (σ, η), (δi, πi)1≤i≤3 each transform the simple, two-dimensional represen-

tation of U(1)A. We then identify the four distinct susceptibilities which are allowed

by isospin symmetry:

χσ =
1

2

∫
d4x 〈σ(x)σ(0)〉 (9)

χδ =
1

2

∫
d4x

〈
δi(x)δi(0)

〉
(10)

χη =
1

2

∫
d4x 〈η(x)η(0)〉 (11)

χπ =
1

2

∫
d4x

〈
πi(x)πi(0)

〉
(12)

where the factor 1/2 has been introduced so that these correspond to the single flavor

quantities that are typically computed using lattice methods and no sum over the

repeated index i is intended. In light of the multiplet structure defined above, the

following relations are implied by SU(2)L × SU(2)R and U(1)A symmetry:

χσ = χπ

χη = χδ

 SU(2)L × SU(2)R, (13)

χσ = χη

χπ = χδ

 U(1)A. (14)

These susceptibilities can be written in terms of the Dirac operator Ml. For

the correlators of the operators πi and δi, which introduce non-zero isospin, only

connected combinations appear:

χπ =
1

N3
σNτ

Tr
〈
γ5M−1

l γ5M−1
l

〉
(15)

χδ = − 1

N3
σNτ

Tr
〈
M−1

l M−1
l

〉
(16)
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where the notation “Tr” indicates a trace over spinor and color indices as well as the

space-time volume. The σ and η susceptibilities are a combination of the connected

parts which appear in χδ and χπ respectively and a disconnected part:

χσ = χδ + 2χdisc (17)

χη = χπ − 2χ5,disc (18)

where the disconnected parts χdisc and χ5,disc are given by

χdisc =
1

N3
σNτ

{〈(
TrM−1

l

)2
〉
−
(〈

TrM−1
l

〉)2
}

(19)

χ5,disc =
1

N3
σNτ

〈(
TrM−1

l γ5
)2
〉
. (20)

As is conventional, we have removed the truly disconnected piece 2N3
sNτΣ

2
l from the

expression for χσ given in Eq. (17). This extra term would appear if the right hand

side of the definition given by Eq. (9) where completely evaluated. The factor of

two that appears in Eqs. (17) and (18) was mistakenly omitted from the published

version of Ref. [9] and arises when these relations are written in terms of single flavor

quantities. The signs of χdisc and χ5,disc have been chosen so that each is positive.

We can combine Eqs. (13), (17) and (18) to obtain relations between the U(1)A

symmetry breaking difference χπ −χδ and χdisc and χ5,disc if SU(2)L×SU(2)R sym-

metry is assumed:

χπ − χδ = (χπ − χσ) + (χσ − χδ) (21)

= 2χdisc (22)

= 2χ5,disc (23)

where the second equation is true if the SU(2)L × SU(2)R relation χπ = χσ of

Eq. (13) is valid while the third is obtained by a similar manipulation and the second

SU(2)L × SU(2)R relation χδ = χη.
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The connected Green’s functions can be computed from the lattice by integrating

the two-point correlators from a point source over the whole volume. This method

was used for the calculations on the 243× 8 ensembles as well as our earlier study of

the 163 × 8 ensembles in [9]. On the 323 × 8 ensembles and for the 163 × 8 results

presented in this report, we achieved a reduced statistical error by using instead a

random Z2 wall source. The disconnected parts are calculated by averaging products

of chiral condensates where the stochastic evaluation of the trace appearing in each

factor is obtained from different stochastic sources.

The SU(2)L×SU(2)R relations given in Eq. (13) should be valid in the continuum

for T > Tc when SU(2)L × SU(2)R becomes an accurate symmetry. They should

also be true when T > Tc in a lattice formulation which preserves chiral symmetry.

However, for our DWF formulation we should expect deviations arising from residual

chiral symmetry breaking. For low energy quantities, mres should provide a good

measure of this residual chiral symmetry breaking, with effects that are well described

as arising simply from the total bare quark mass m̃ = ml +mres.

However, the four susceptibilities being discussed are not simple long-distance

quantities since the space-time integrals that appear in their definitions include

points where the two local operators collide. In fact, the connected parts of the

susceptibilities contain quadratic divergences while the disconnected parts diverge

logarithmically. The presence of quadratic divergences in the connected suscepti-

bilities, e.g. χπ and χδ, can be easily deduced from the Wilson operator product

expansion and dimensional arguments. The product of two dimension-three fermion

bilinears separated by a space-time distance x should contain a constant behaving

as 1/x6 as x → 0. When integrated over space-time to form the susceptibility, this

1/x6 term will give a quadratic divergence. For the disconnected parts of the suscep-

tibilities, a similar dimensional argument applies. However, the disconnected parts

are constructed from the product of two independent fermion loops, each evaluated
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as a separate trace. For the case of scalar or pseudoscalar susceptibilities, chiral

symmetry requires that each trace be proportional to ml so the product will behave

as m2
l /x

4 leading to a logarithmic divergence multiplied by the very small factor m2
l .

Thus, if the continuum regulator respects chiral symmetry, then the SU(2)L×SU(2)R

and U(1)A breaking differences χπ − χσ, χδ − χη, χπ − χδ and χη − χσ will all con-

tain only small, logarithmic singularities proportional to m2
l ln(ml/Λ) if evaluated in

order-by-order in QCD perturbation theory, where Λ is the continuum cutoff scale.

In our lattice-regulated domain wall theory, the residual chiral symmetry breaking

will result in these same differences containing small unphysical pieces of order m2
res.

As in the case of the chiral condensate, mres does not literally enter these differences

but instead we expect that m2
res will provide a reasonable estimate of their size.

Note, when expressed in physical units mres ∼ e−αLs/a so that our estimate m2
res ∼

e−2αLs/a2 of a chiral symmetry breaking difference remains quadratically divergent

but is suppressed by the same factor that makes m2
res small. (Here, for simplicity,

we assume that the residual chiral symmetry breaking effects fall exponentially with

increasing Ls, with an exponent α, unrelated to the α used earlier in this Section.)

For the purposes of this paper m2
res ∼ (10 MeV)2, a quantity that is negligible on

the (ΛQCD)2 ≈ (300 MeV)2 scale of the physical parts of the susceptibilities being

subtracted.

Finally we examine two additional identities that hold in the continuum limit.

The first is the relation between χ5,disc and the topological susceptibility χtop. This

relation begins with the identity

Qtop = mc
l Tr

{
γ5 1

Ml

}
(24)

which for the continuum theory will hold for each gauge configuration. Here for

clarity we have introduced the quantity mc
l to represent the light quark mass in

the continuum theory. This is easily understood by using a sum over Dirac operator
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eigenvectors to evaluate the trace and recognizing that the result is simply the number

of right- minus the number of left-handed zero modes [20] which is equal to Qtop by

the Atiyah-Singer theorem. Recall that

Qtop =
g2

32π2

∫
d4xF a

µν(x)F̃ a
µν(x). (25)

Here F̃µν = 1
2

∑
ρσ εµνρσFρσ where εµνρσ is the usual anti-symmetric Levi-Civita tensor

with ε1234 = 1.

The desired identity:

χtop = (mc
l )

2χ5,disc (26)

is simply the ensemble average of the square of Eq. (24). This continuum equation

should also relate DWF lattice quantities provided the total bare quark mass m̃ is

used in place of the continuum mass mc
l . As was explored at length in Ref. [9],

this relation is badly violated for our lattice calculation because at our relatively

coarse lattice spacing the quantity Qtop is difficult to compute directly. The right

hand side of Eq. (26) appears to nicely define the topological susceptibility giving

the same answer even when the light quark quantity m̃2
l χ5,disc is replaced with the

corresponding strange quark quantity or the product of strange and light quark

expressions. (Note the right hand side of Eq. (24) is expected to give the same result

on a given gauge configuration independent of the quark mass.) For completeness

χ5,disc/T
2 and χtop/(m̃lTc)

2 are tabulated in the two right-most columns of Tab. III,

where χtop is computed using the procedure described in Ref. [9]. As can be seen in

Tab. III , their disagreement is substantial. However, the fractional discrepancy does

decrease with increasing temperature (and decreasingly lattice spacing) as should be

expected if this is a finite lattice spacing artifact. We will not make further use of

χtop.

The second identity is the usual Ward identity connecting χπ and the chiral con-

densate. This can be derived in the continuum for non-zero quark mass by evaluating
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the following integrated divergence:

0 =

∫
d4x∂µ

〈
0|T

(
Aaµ(x)πb(0)

)
|0
〉

(27)

=

∫
d4x

〈
0|T

(
−2mc

l iπ
a(x)πb(0)

)
|0
〉
− 2i 〈0|σ(0)|0〉 δab (28)

where a and b are isospin indexes. Here the left term in the second line comes from

the divergence of the axial current, ∂µA(x)aµ, while the right term results from the

equal-time commutator that arises when the partial derivative with respect to the

time is brought inside the time-ordered product. The result is the Gell-Mann-Oakes-

Renner relation [21]:

mc
lχπ = Σl. (29)

While this relation should be true in a continuum theory which has been regulated

in a chirally symmetric way, both the right- and left-hand sides of Eq. (29) contain

quadratic divergences as discussed earlier. Thus, we should not expect this equation

to be obeyed in our DWF theory unless we take the limit of infinite Ls at finite a so

that our theory has an exact chiral symmetry.

However, this equation has two important uses. First, we can repeat its derivation

in our lattice theory using the partially conserved, 5-dimensional axial current Aaµ

constructed by Furman and Shamir [22] and the divergence equation obeyed by Aaµ:

∂µAaµ = −2imlπ
a + 2Ja5q (30)

where the definition of the “mid-point term” Ja5q can be found in Ref. [23]. When

used in the above derivation this relation yields the lattice identity:

2mlχπ +

∫
d4x 〈0|T (iJ5q(x)aπa(0))〉 = 2Σl (31)

for a = 1, 2 and 3. In the usual application of Eq. (30), iJa5q is replaced in Eq. (31) by

mresπ
a which would provide a DWF derivation of Eq. (29) in which the continuum
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light quark mass mc
l is replaced by m̃ = ml +mres. However, the low-energy relation

iJa5q ≈ mresπ
a cannot be used here because short-distances are involved. Never-the-

less, we can simply evaluate both sides of Eq. (31) in our lattice calculation as a

check of this discussion and find agreement within errors. Our numerical results for

the three quantities which appear in Eq. (31) are tabulated in Tab. II for each of

the seven temperatures studied as well as the right- and left-hand sides of Eq. (31)

after a common factor of 2 has been removed. We also plot in Fig. 1 both the left-

and right-hand sides of Eq. (31) as well (ml + mres)χπ, as the result of the naive

use of the low-energy relation iJa5q ≈ mresπ
a. The left panel of Fig. 1 shows these

quantities for the light-quark case discussed here while the right panel shows the

same quantities computed using the strange quark. In both Tab. II and Fig. 1, the

mixed susceptibility appearing in Eq. (31) is represented by ∆f
mp where

∆f
mp =

∫
d4x

〈
0|T

(
iJ

(f)
5q (x)π(f)(0)

)〉
. (32)

where in this equation we construct the quark bi-linears J
(f)
5q and π(f) from a single

flavor of quark specified by f = l or s and include only connected graphs, in which

the quark fields are contracted between J5q and π. In these tables and figures and

those which follow, when a combination of quantities that were computed separately

are combined, such as mlχ
l
π + ∆l

mp, we will use the jackknife method with data

that has been averaged over bins of 50 configurations to compute the error on the

combined quantity so that the effects of statistical correlations between the quantities

being combined are included. However, for simplicity, if a computed renormalization

factor, factor of a expressed in physical units or factor of mres appears, these factors

usually have smaller errors than the quantities they multiply and their fluctuations

will be ignored.

A second use of Eq. (29) is to provide a method to compute a more physical result

for ∆l,s in a DWF calculation. Since no chiral limit has been taken in the continuum
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FIG. 1. The left panel shows the light-quark chiral condensate, Σl, and the sum of mlχπ

and the mixed π − J5q/2 susceptibility to which it should be equal according to the Ward

identity in Eq. (31). Also shown is (ml + mres)χπ ≡ m̃lχπ which would equal Σl if mres

were the only effect of residual chiral symmetry breaking. The right panel shows the

same quantities computed using the strange instead of the light quark. Similar agreement

between the right and left hand sides of Eq. (31) is found for the 243 and 163 volumes, as

can be seen from Tab. II

derivation of Eq. (29), it will hold equally well if applied to either strange or light

quarks. If we use the resulting equations for Σl and Σs to determine the weighted

difference ∆l,s we obtain:

∆l,s = mc
l (χπl − χπs) , (33)

where we use the symbol χπs to represent the “pion” susceptibility that results if the

light quark mass is replaced by that of the strange quark and add the subscript l

to the usual pion susceptibility for clarity. From the perspective of the continuum

theory both sides of Eq. (33) provide an equally good value for the subtracted chiral

condensate. Neither quantity contains a quadratic divergence and the much smaller
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# T (MeV) β χlπ/T
2 χsπ/T

2 ∆l
mp/T

3 ∆s
mp/T

3 mlχ
l
π+∆l

mp

T 3

msχsπ+∆s
mp

T 3 Σl/T
3

1 139 1.633 313(2) 94.83(7) 13.34(8) 1.833(11) 9.94(6) 41.21(2) 10.07(4)

2 149 1.671 267(3) 93.15(7) 11.14(14) 1.939(10) 7.11(10) 36.52(3) 7.03(6)

3 159 1.707 214(3) 90.96(10) 4.77(7) 1.038(6) 5.71(9) 33.71(5) 5.80(6)

4 164 1.725 187(3) 89.57(12) 2.99(7) 0.757(5) 5.05(10) 32.00(5) 5.02(7)

5 168 1.740 161(3) 88.20(14) 1.91(6) 0.576(5) 4.16(11) 30.70(7) 4.16(8)

6 177 1.771 129(3) 85.64(11) 0.83(3) 0.329(2) 3.23(9) 27.94(3) 3.17(5)

7 186 1.801 100(2) 83.20(11) 0.33(1) 0.193(2) 2.39(6) 25.42(4) 2.46(4)

8 195 1.829 93(2) 80.81(9) 0.18(1) 0.118(1) 2.15(6) 23.20(2) 2.15(3)

9 149 1.671 270(13) 93.2(7) 11.6(7) 2.02(7) 7.5(5) 36.6(3) 7.10(6)

10 159 1.707 198(11) 90.6(6) 4.3(3) 1.05(4) 5.2(4) 33.6(3) 5.58(10)

11 168 1.740 164(8) 89.6(6) 1.96(15) 0.61(3) 4.3(3) 31.2(2) 4.40(10)

12 177 1.771 124(10) 85.7(5) 0.79(12) 0.33(2) 3.1(3) 28.0(2) 3.03(7)

13 186 1.801 99(3) 82.6(4) 0.31(2) 0.184(7) 2.35(8) 25.2(1) 2.58(6)

14 139 1.633 302(5) 95.0(2) 12.6(2) 1.825(21) 9.30(18) 41.26(8) 9.26(13)

15 149 1.671 247(5) 93.0(1) 10.1(2) 1.922(13) 6.34(14) 36.43(6) 6.26(12)

16 149 1.671 257(3) 93.6(1) 4.84(8) 0.815(7) 8.40(12) 38.24(6) 8.39(10)

17 159 1.707 189(5) 90.8(2) 4.09(16) 1.034(10) 4.92(19) 33.64(7) 5.25(17)

18 168 1.740 155(6) 88.3(2) 1.83(11) 0.573(7) 4.00(19) 30.73(8) 4.03(18)

19 177 1.771 127(7) 85.5(2) 0.80(7) 0.326(4) 3.15(19) 27.89(7) 3.16(15)

20 186 1.801 102(4) 83.5(2) 0.35(3) 0.196(3) 2.46(11) 25.50(6) 2.44(9)

21 195 1.829 91(2) 80.9(1) 0.17(1) 0.118(1) 2.10(5) 23.22(4) 2.10(5)

TABLE II. The unrenormalized iso-vector pseudoscalar and mixed pseudoscalar/mid-

point susceptibilities for the light and strange quarks as well as the combinations (mqχ
q
π +

∆q
mp)/T 3 for q = l, s, which appear in the Ward identity, Eq. (31). The Ward identity

requires the right and third-from-right columns to agree as well as agreement between the

column second from the right above and the fifth column from the left in Tab. III. Moving

from top to bottom, the three sections in this table correspond to the volumes 323 × 8,

243 × 8 and 163 × 8. 21



logarithmic divergences present on both sides are equal. For a DWF theory with

residual chiral symmetry breaking this equation does not hold and the left hand side

∆l,s contains an unphysical additive constant O(mres/a
2). However, the right-hand

side is much better defined with no 1/a2 term. Thus, we can use the right-hand side

of Eq. (33) to provide a more physical result for ∆l,s which will contain only a small,

unphysical piece of order mlm
2
s ln(msa). Thus, we can define an improved value for

∆l,s:

∆̃l,s = m̃l (χπl − χπs) (34)

which we will use to compare with spectral formulae and with the results for ∆l,s

from other lattice fermion formulations.

B. Chiral Symmetry Restoration

In this section we present and discuss our numerical results for the chiral con-

densate and for the disconnected chiral susceptibility as a function of temperature.

Figure 2 shows the Monte Carlo time histories of the light-quark chiral condensate

for seven of the temperatures studied. The time evolutions for the 323× 8 ensembles

are displayed in the left panel and those from 243× 8 in the right. The evolutions of

the light-quark condensates from both sets of ensembles appear to follow the same

trend. For the lower temperature region (T ≤ 168 MeV), the light-quark condensate

fluctuates around its average value. However, as temperature grows higher, the fluc-

tuations can better be described as upward spikes added to an otherwise flat base

line.

This behavior is typically seen in finite temperature DWF calculations and arises

because above Tc the main contribution to the chiral condensate comes from iso-

lated, near-zero modes [24]. These modes become increasingly infrequent as the

temperature is increased but, when present, produce a noisy, non-zero chiral con-

22



densate. The noise results from the relatively small space-time extent of each zero

mode which is therefore sampled in our stochastic determination with relatively few

random numbers.

Such behavior becomes most pronounced for T ≥ 186 MeV in the 323×8 calcula-

tions. At T = 177 MeV, the 243×8 Monte Carlo time evolution shows this character-

istic plateau-spike structure more distinctly than does the comparable 323 × 8 time

history. This suggests a lower pseudo-critical transition temperature for the smaller

volume or that the larger 323 volume supports a larger number of such zero modes,

reducing the size of the intervals when none are present and the chiral condensate is

nearly zero.
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FIG. 2. Monte Carlo time histories of the light-quark chiral condensate Σl/T
3 on the

323 × 8 (left) and 243 × 8 (right) ensembles. (Only the longest streams from run # 9

and #10 are displayed.) There is a vertical offset of 5 units between successive data

sets with the β = 1.829 results unshifted. Note that the time evolution corresponding

to β = 1.725, 323 × 8 (run # 4) behaves in a similar manner to those of its neighboring

ensembles, but is omitted from the graph to preserve a uniform separation between each

ensemble.
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The ensemble averages of the light, subtracted and strange chiral condensates are

summarized in Tab. III. The temperature dependence of the light and the subtracted

condensates is also illustrated in Fig. 3. As that figure shows, results from 323×8 and

243 × 8 ensembles agree well throughout the transition region, whereas those from

the 163× 8 ensembles show an appreciable discrepancy for T < 168 MeV, indicating

a small but well-resolved finite volume effect.

A second measure of the restoration of SU(2)L × SU(2)R symmetry is the two

differences χπ − χσ and χη − χδ, following Eq. (13). These two SU(2)L × SU(2)R-

breaking differences are plotted in Fig. 4. The quantity χπ − χσ shows the behavior

that might be expected from the temperature dependence of the chiral condensate

shown Fig. 3. A large SU(2)L × SU(2)R-breaking difference is seen for T ≤ 159

MeV which becomes zero for T ≥ 168 MeV. The second difference χη − χδ is more

surprising, being essentially zero throughout our temperature range. While we do

not have a crisp explanation for this unexpected SU(2)L× SU(2)R symmetry below

Tc we do expect this difference to vanish for T > Tc and to be small relative to

χπ − χσ for T < Tc since the large value of χπ reflects the small pion mass while the

δ, σ and η are all expected to be relatively massive below Tc.

While the chiral condensate is the order parameter for the chiral transition, its

strong apparent temperature dependence results from a combination of the finite

temperature physics of interest and its dependence on the lattice scale as a dimension

3 operator. (This can be recognized by noting that we often discuss the dimensionless

quantity Σl/T
3 which will change significantly with temperature simply because of

the 1/T 3 factor.) The location of the pseudo-critical temperature is much more easily

seen by examining the disconnected chiral susceptibility χdisc. This has dimension 2

and so varies a little less strongly with the lattice scale (which we are changing to

vary T on our Nτ = 8 lattice) and shows a dramatic peak near the transition which

can be used to define the location of the pseudo-critical temperature Tc. Numerical
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FIG. 3. Comparison of light-quark (upper), subtracted (lower left) and improved sub-

tracted (lower right) chiral condensates computed on different volumes. The 323 and 243

volumes agree reasonably well for all temperatures but are 5-10% larger than the corre-

sponding values from the 163 volume for T < 168 MeV. The results appear to be volume

independent for T ≥ 168 MeV.

results for χdisc before renormalization are presented in Tab. III. In order to allow

a comparison with results from the staggered formalism, the susceptibilities should

be normalized in the MS scheme at 2 GeV. They can be obtained from the directly-
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# T (MeV) β Σl/T
3 Σs/T

3 ∆l,s/T
3 χdisc/T

2 χ5,disc/T
2 χtop/(m̃lT )2

1 139 1.633 10.07(4) 41.27(2) 6.40(4) 20(2) 118(7) 261(11)

2 149 1.671 7.03(6) 36.48(2) 3.84(5) 28(3) 94(8) 177(11)

3 159 1.707 5.80(6) 33.73(2) 2.83(6) 33(3) 70(8) 118(10)

4 164 1.725 5.02(7) 32.04(3) 2.16(7) 38(3) 49(4) 78(4)

5 168 1.740 4.16(8) 30.72(3) 1.46(7) 37(3) 38(5) 54(4)

6 177 1.771 3.17(5) 27.94(2) 0.71(5) 22(2) 24(3) 37(3)

7 186 1.801 2.46(4) 25.38(2) 0.22(4) 12(2) 10(2) 15(2)

8 195 1.829 2.15(3) 23.20(1) 0.14(3) 7(1) 10(1) 15(2)

9 148 1.671 7.10(6) 36.53(2) 3.90(6) 31(2) 89(5) 165(7)

10 159 1.707 5.58(10) 33.68(3) 2.66(10) 36(3) 64(6) 110(6)

11 168 1.740 4.40(10) 30.84(4) 1.69(10) 32(3) 47(6) 67(6)

12 177 1.771 3.03(7) 27.90(3) 0.57(7) 19(2) 21(3) 32(3)

13 186 1.801 2.58(6) 25.41(2) 0.34(6) 13(2) 14(2) 18(2)

14 139 1.633 9.26(13) 41.02(4) 5.61(12) 36(3) 113(7) 252(11)

15 149 1.671 6.26(12) 36.42(5) 3.07(12) 44(3) 89(6) 159(6)

16 149 1.671 8.39(10) 38.30(3) 5.00(10) 41(2) 90(6) 168(7)

17 159 1.707 5.25(17) 33.81(6) 2.27(16) 43(4) 55(6) 97(7)

18 168 1.740 4.03(18) 30.66(7) 1.33(18) 35(5) 37(5) 60(7)

19 177 1.771 3.16(15) 27.88(6) 0.71(15) 25(4) 24(4) 36(4)

20 186 1.801 2.44(9) 25.43(4) 0.20(9) 11(4) 9(3) 21(6)

21 195 1.829 2.10(5) 23.22(3) 0.09(5) 6(2) 6(2) 11(2)

TABLE III. The unrenormalized chiral condensates and disconnected chiral susceptibil-

ities. The two right-most columns should agree according to Eq. (26). As discussed, we

attribute their large difference to inaccuracy in the strong-coupling measurement of χtop.

Moving from top to bottom, the three sections correspond to the volumes 323 × 8, 243 × 8

and 163 × 8.
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FIG. 4. The two SU(2)L × SU(2)R-breaking susceptibility differences χMS
π − χMS

σ and

χMS
δ − χMS

η plotted as a function of temperature for our three spatial volumes: 163, 243

and 323. For temperatures of 170 MeV and above these differences are consistent with zero

and the expected restoration of chiral symmetry above Tc. The quantity χπ − χσ becomes

very large below Tc reflecting the small mass of the pseudo-Goldstone π meson below Tc.

In contrast, the second difference χη − χδ remains relatively small as the temperature

decreases below Tc, reflecting the relatively large masses of the δ and η mesons.
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computed lattice quantities using the relation:

χMS =

(
1

Zmf→MS

)2

χbare. (35)

The renormalization factors Zmf→MS for each temperature are listed in Tab. IV.

These values for Zmf→MS were obtained in Ref. [9] from the dependence of the pion

mass, expressed in physical units, on the input quark mass and the known value of

m̃l which corresponds to the physical value of mπ [25].

The dependence of the renormalized χdisc on volume is shown in the left panel

of Fig. 5. At T = 168 MeV and above the disconnected chiral susceptibilities from

all volumes agree within errors. However, at lower temperatures there is a large

discrepancy between the 163 × 8 and the 323 × 8 ensembles which becomes larger as

temperature decreases. Results from 243 × 8, fall in between, although they tend to

lie closer to the 323 × 8 points.

Since we are studying only a single value of Nτ and a pion mass that is larger

than physical by a factor of 1.5, it is premature to draw a definite quantitative

conclusion about the pseudo-critical transition temperature. However, a qualitative

examination of the left panel in Fig. 5 suggests that a peak in χdisc occurs for the 163

and 243 volumes at approximately 160 MeV and that this peak position increases to

slightly above 165 MeV as the volume is increased to 323.

The right panel of Fig. 5 compares the mπ = 200 MeV, 323 × 8 DWF results for

χdisc with those obtained from staggered fermions using an 483 × 12 volume and the

HISQ and ASQTAD staggered actions with mπ = 161 and 177 MeV respectively [26].

Again, the disconnected chiral condensates are consistent among these three methods

for T ≥ 175 MeV. However, the ASQTAD results lie substantially below the DWF

and HISQ results for temperatures at and below the transition region. The HISQ

results are in good agreement with the 323×8 DWF results. However, this agreement

appears to be coincidental, since the HISQ results are obtained for a quoted pion
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mass of 161 MeV, significantly smaller than the 200 MeV pion mass of the DWF

ensembles. The expected strong dependence of χdisc near Tc on the pion mass suggests

that mπ = 160 MeV DWF results would lie above those found with HISQ. The

discrepancy between the DWF and ASQTAD results and the expected discrepancy

with comparable HISQ results are likely explained by lattice discretization errors

associated with staggered taste symmetry breaking.
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FIG. 5. The left panel compares χdisc computed using DWF on 323, 243 and 163 volumes.

Significant volume dependence can be seen between 323 and 163, while the 243 results agree

with those from 323 within errors. The right panel compares the 323, Nτ = 8 DWF results

for χdisc with those from staggered fermions on a 483×12 volume using both the ASQTAD

and HISQ actions [26]. In each case χdisc is renormalized in the MS(µ = 2 GeV) scheme.

C. U(1)A symmetry

We will now discuss the degree to which the anomalous U(1)A symmetry is re-

stored above Tc by examining the two implications of this symmetry for the four

susceptibilities given in Eq. (14): χπ = χδ and χσ = χη. The numerical results
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for each of these four susceptibilities are summarized in Tab. IV as well as their

U(1)A-breaking differences χπ − χδ and χσ − χη which we will often abbreviate as

∆π,δ = χπ − χδ and ∆σ,η = χσ − χη. The integrated susceptibilities χπ and χδ are

calculated from the corresponding two point correlation functions by summing the

position of the sink over the entire space-time volume. For the 243 × 8 ensembles,

we use a single point source located at (0, 0, 0, 0), while for the 163 × 8 and 323 × 8

ensembles, we use a random Z2 wall source located on a fixed, 3-dimensional spatial

slice, xz = 0.

These two U(1)A-breaking differences are plotted in Fig. 6. As can be seen, these

diminish rapidly with temperature but are many standard deviations from zero even

at the temperatures of 177 and 186 MeV, well above Tc. We expect that the effect

of explicit chiral symmetry breaking, either from the non-zero input quark mass or

finite Ls, residual chiral symmetry breaking, on these differences will be much smaller.

Specifically, for T > Tc we might estimate the contribution of explicit U(1)A breaking

to be of order m̃2
l /T

2 ∼ (0.004 ∗ 8)2 = 0.001 compared to results between 3 and 7

shown in Tab. IV. 1 Numerical evidence for the absence of explicit chiral symmetry

breaking is provided by the near equality of the two differences χπ −χδ and χσ −χη
which are related by SU(2)L×SU(2)R symmetry, a symmetry also explicitly broken

by ml and mres.

Strong evidence for the small size of possible explicit chiral symmetry breaking

also comes from the results for χπ − χδ computed for the strange quark. It is the

explicit breaking of chiral symmetry by the valence propagators which can create

a non-anomalous signal for χπ − χδ. As can be seen from Tab. V the results for

χπ − χδ are smaller for the strange than for the light quark. If the strange quark

1 This assumed quadratic dependence on m̃l does not allow for a possible combined effect of explicit

chiral symmetry breaking and the sort of non-analytic behavior above Tc that we are trying to

study. We do not have sufficient numerical results to study such effects which we view as “second

order” since they require both non-perturbative chiral breaking above Tc and m̃l 6= 0.
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FIG. 6. The two U(1)A-violating susceptibility differences, χMS
π − χMS

δ and χMS
σ − χMS

η

plotted as a function of temperature for our three spatial volumes. As expected these quan-

tities are very different below Tc. However, even for temperatures of 160 MeV and above

these quantities differ from zero by many standard deviations, providing clear evidence for

anomalous symmetry breaking above Tc. The near equality of these two differences above

Tc, which are related by SU(2)L × SU(2)R symmetry suggests that the effects of explicit

chiral symmetry breaking are much smaller (as expected) than this anomalous symmetry

breaking.
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# T (MeV) Zmf→MS χMS
π /T 2 χMS

δ /T 2 χMS
σ /T 2 χMS

η /T 2 ∆MS
π,σ/T

2 ∆MS
η,δ /T

2 ∆MS
π,δ /T

2 ∆MS
σ,η /T

2

1 139 1.47 144.7(7) 34.0(3) 53(2) 35(6) 92(2) 1(6) 111(1) 18(6)

2 149 1.49 120.1(1.3) 33.1(6) 58(2) 36(6) 62(3) 3(6) 87(2) 22(7)

3 159 1.51 94.0(1.1) 34.3(5) 63(3) 36(6) 31(3) 2(5) 60(2) 27(6)

4 164 1.52 80.8(1.3) 33.2(8) 66(3) 39(4) 15(3) 5(4) 48(2) 28(5)

5 168 1.53 68.7(1.4) 33.6(9) 65(3) 37(4) 4(3) 3(4) 35(2) 28(4)

6 177 1.55 53.8(1.3) 30.8(1.1) 49(2) 34(2) 5(3) 3(2) 23(2) 15(3)

7 186 1.57 40.6(8) 34.1(6) 44(1) 32(1) -4(1) -2(1) 6(1) 12(2)

8 195 1.58 37.2(9) 31.1(8) 37(1) 29(1) 0.4(1.4) -2(2) 6(2) 8(2)

9 149 1.49 122(6) 32(2) 61(4) 38(9) 61(8) 6(10) 90(8) 23(10)

10 159 1.51 87(5) 37(2) 66(4) 31(7) 20(8) -6(8) 50(6) 35(10)

11 168 1.53 70(3) 36(2) 64(3) 30(7) 6(6) -6(7) 34(5) 34(9)

12 177 1.55 52(4) 31(3) 47(4) 34(4) 4(7) 3(7) 20(7) 13(8)

13 186 1.57 40(1) 34(1) 44(1) 29(2) -4(2) -4(2) 7(2) 15(3)

14 139 1.47 140(2) 33(2) 66(3) 34(7) 74(4) 1(6) 107(4) 32(8)

15 149 1.49 111(2) 33(2) 73(2) 38(6) 39(4) 5(5) 78(4) 35(7)

17 159 1.51 83(2) 38(2) 75(3) 35(4) 8(3) -3(3) 45(4) 40(6)

18 168 1.53 66(3) 33(2) 64(4) 34(5) 3(4) 0.3(4.7) 33(4) 30(9)

19 177 1.55 53(3) 31(2) 51(2) 33(3) 2(3) 2(3) 22(5) 19(5)

20 186 1.57 41(1) 34(1) 43(2) 34(2) -1(1) 0.1(1.3) 8(3) 9(4)

21 195 1.58 36(1) 32(1) 37(1) 31(1) -1(1) -0.5(8) 5(2) 6(2)

TABLE IV. Results for the four independent susceptibilities χπ, χδ, χσ and χη as well

as the two pairs of differences, ∆π,σ = χπ − χσ, ∆η,δ = χη − χδ and ∆π,δ = χπ − χδ,

∆σ,η = χσ − χη which measure the degree of SU(2)L × SU(2)R and U(1)A symmetry,

respectively. All of these susceptibilities are renormalized in the MS(µ = 2 GeV) scheme

using the renormalization factor listed in the Zmf→MS column. Moving from top to bottom,

the three sections correspond to the volumes 323 × 8, 243 × 8 and 163 × 8.
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# T (MeV) χs,MS
π /T 2 χs,MS

δ /T 2 χs,MS
σ /T 2 χs,MS

η /T 2 ∆s,MS
π,σ /T 2 ∆s,MS

η,δ /T 2 ∆s,MS
π,δ /T 2 ∆s,MS

σ,η /T 2

1 139 43.89(3) 31.50(2) 33.7(2) 42.9(4) 10.1(2) 11.4(4) 12.39(5) -9.2(4)

2 149 41.96(3) 31.70(3) 33.8(2) 41.6(3) 8.2(2) 9.9(3) 10.26(5) -7.9(4)

3 159 39.89(4) 31.71(3) 34.8(4) 39.0(3) 5.1(4) 7.3(3) 8.18(7) -4.2(4)

4 164 38.77(5) 31.74(4) 35.6(4) 38.1(4) 3.2(4) 6.4(4) 7.02(8) -2.6(5)

5 168 37.68(6) 31.67(3) 35.3(4) 37.1(3) 2.4(4) 5.4(3) 6.00(9) -1.8(5)

6 177 35.65(5) 31.39(2) 33.4(3) 35.1(3) 2.2(3) 3.7(4) 4.26(6) -1.7(5)

7 186 33.75(5) 30.83(3) 32.7(3) 33.4(3) 1.1(3) 2.5(3) 2.93(6) -0.7(3)

8 195 32.37(4) 30.46(2) 31.7(1) 32.2(2) 0.7(1) 1.7(2) 1.91(4) -0.5(3)

9 149 42.0(3) 31.57(16) 34.0(5) 41.5(5) 7.9(6) 10.0(5) 10.4(4) -7.5(7)

10 159 39.7(3) 31.82(12) 34.4(3) 39.0(5) 5.3(4) 7.2(6) 7.9(4) -4.6(6)

11 168 38.3(3) 31.73(11) 33.9(4) 37.7(4) 4.3(6) 5.9(4) 6.5(3) -3.7(6)

12 177 35.7(2) 31.45(9) 33.5(2) 35.5(4) 2.2(3) 4.1(4) 4.2(3) -2.0(5)

13 186 33.5(1) 30.84(7) 32.3(2) 32.9(3) 1.2(2) 2.0(3) 2.7(2) -0.6(4)

14 139 43.95(7) 31.52(5) 33.8(2) 43.6(3) 10.2(2) 11.5(3) 12.44(11) -9.3(4)

15 149 41.87(6) 31.79(5) 34.8(3) 41.1(4) 7.1(3) 9.4(4) 10.08(9) -6.4(5)

17 159 39.81(8) 31.72(6) 34.6(3) 39.7(3) 5.2(3) 8.0(3) 8.09(13) -5.1(4)

18 168 37.72(10) 31.68(6) 34.7(4) 38.0(4) 3.0(4) 6.4(4) 6.04(14) -3.3(5)

19 177 35.58(9) 31.41(6) 33.9(2) 35.6(3) 1.6(2) 4.2(3) 4.18(13) -1.7(3)

20 186 33.86(8) 30.87(4) 32.7(1) 34.0(2) 1.2(2) 3.1(2) 2.99(10) -1.3(3)

21 195 32.41(6) 30.48(3) 31.8(1) 32.2(3) 0.6(1) 1.7(3) 1.92(5) -0.3(3)

TABLE V. The same quantities as tabulated in Tab. IV but with the light quark replaced

by the strange quark.

results are interpreted as coming entirely from explicit chiral symmetry breaking, the

corresponding effects for the light quarks should be reduced by a factor of (m̃l/m̃s)
2 ≈

0.008. At T = 179 MeV, this approach gives explicit chiral symmetry breaking for
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the light quark quantity χπ − χδ of order 4.26 · 0.008 = 0.034. This is larger than

the 0.001 estimate above but only a fraction of a percent of the signal. Thus, we

interpret the results for χπ − χδ and χσ − χη shown in Tab. IV and Fig. 6 as clear

evidence for the anomalous breaking of U(1)A symmetry for T > Tc.

IV. LOW-LYING EIGENVALUE SPECTRUM

In Section III we studied the QCD transition region by examining the temperature

dependence of vacuum expectation values and correlation functions whose behavior

is closely related to the SU(2)L × SU(2)R and U(1)A symmetries that are restored,

or partially restored, as the temperature is increased through the transition region.

In this section we will examine a different quantity, the spectrum of the light-quark

Dirac operator, which is also directly related to the violation of these symmetries.

In the first subsection, Sec. IV A we review the basic formulae relating the Dirac

eigenvalue spectrum to other measures of SU(2)L × SU(2)R and U(1)A symmetry

breaking in continuum field theory. In Sec. IV B we present the distribution found

for the 100 lowest Dirac eigenvalues for each of the six temperatures studied between

150 - 200 MeV on our largest, 323 × 8 volume. Finally in Secs. IV C and IV D we

make a quantitative connection between this measured eigenvalue spectrum and the

subtracted chiral condensate ∆l,s and the U(1)A-breaking susceptibility difference

∆π,δ = χπ − χδ, respectively. As is discussed in Sec. IV D, at temperatures just

above Tc the Dirac spectrum agrees well with the predictions of the dilute instanton

gas approximation and this approximation provides a good quantitative description

of the anomalous U(1)A symmetry breaking difference χπ − χδ seen in this region.
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A. Preliminaries

The most familiar relation between the Dirac spectrum and an important QCD

observable is the spectral expression for the chiral condensate,

Σq = −
〈
ψψ
〉
q

=

∫ ∞
0

dλ ρ(m̃l, m̃s, λ)
2m̃q

m̃2
q + λ2

, q = l, s. (36)

Here we have used the symmetry ρ(λ) = ρ(−λ), limiting the integral to non-negative

values of λ and introducing the compensating factor of 2 in the numerator. In the

infinite volume and chiral limits and applied to the light quark condensate, this

equation becomes the well-known Banks-Casher relation [27]:

− lim
m̃l→0

lim
V→∞

〈
ψψ
〉
l
= lim

λ→0
lim
m̃l→0

lim
V→∞

πρ(m̃l, m̃s, λ). (37)

Therefore, if the eigenvalue density ρ(m̃, λ) is non-vanishing in infinite volume at the

origin, chiral symmetry will be broken by a non-vanishing quark condensate.

While we have used the lattice variable m̃q to represent the quark mass in this

equation, it should be emphasized that this is an equation derived in continuum

field theory. The equivalent expression, derived for DWF in a lattice theory will be

quite different. For example, a spectral expression for Σq derived from an eigenmode

expansion of the DWF lattice propagator will involve wave functions for the five-

dimensional modes evaluated on and integrated over the two s = 0 and s = Ls − 1,

four-dimensional faces, yielding an expression significantly more complex than that

given in Eq. (36) [23]. However, when appropriately renormalized, the eigenvalue

density ρ(m̃, λ) is a physical quantity that can be computed using lattice meth-

ods [28]. Thus, as in Ref. [9], we compute the low-lying spectrum ρlatt(λ) of the

hermitian DWF Dirac operator, DH = γ5R5DDWF, where R5 is the reflection op-

erator in the fifth dimension: s → Ls − 1 − s for the fifth-dimension coordinate

0 ≤ s ≤ Ls − 1. We then use the β-dependent renormalization factor Ztw→MS to
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transform ρlatt(λ) into MS conventions:

ρ(λ) =
1

Ztw→MS

ρlatt(Ztw→MSλ). (38)

As is discussed in Ref. [9] the renormalization factor Ztw→MS is given by a product

of the factor Ztw→mf given in Tab. IV of that reference and the factor Zmf→MS listed

in Tab. IV of the present paper.

Since in a lattice calculation the Banks-Casher limit of infinite volume and van-

ishing quark mass cannot be easily evaluated, we would like to use Eq. (37) for the

case of finite volume and non-zero quark mass. However, in that case the integral

over λ diverges quadratically. As a result, this equation is dominated by the region

of large λ where the DWF lattice and continuum formalisms should not agree and is

well outside the limited range of the 100 lowest eigenvalues which we have computed.

However, much can be learned from Eq. (37) if we use it to evaluate the difference

∆l,s, subtracting the light and strange quark equations. This difference will be stud-

ied in Sec. IV C, comparing the subtracted spectral integral with both the simple

difference of condensates, ∆l,s and the improved quantity ∆̃l,s.

In a similar manner, the difference between the connected pseudoscalar and scalar

light-quark susceptibilities, χπ − χδ, which serves as a good indicator of U(1)A sym-

metry breaking, can be expressed as a spectral integral [29]:

∆π,δ ≡ χπ − χδ =

∫ ∞
0

dλ ρ(m̃l, λ)
4m̃2

l

(m̃2
l + λ2)2

, (39)

where again this is a continuum equation which requires that all of the quantities

which appear are renormalized in a consistent scheme. In contrast to Eq. (37), this

expression is only logarithmically divergent and for our values of the lattice spacing

and quark masses, is dominated by the region where λ is small – the region in which

we have measured the spectrum and in which the lattice and continuum spectral

functions should agree, except for the usual O(a2) errors inherent in a calculation at

non-zero lattice spacing.
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In order to distinguish and to better understand the effects of different possible

behaviors of ρ(m̃l, λ) we will also make use of the small λ and small m̃ parametrization

for ρ(m̃l, λ),

ρ(m̃, λ) = c0m̃
2δ(λ) + c1|λ|+ c2m̃+ · · · , (40)

appropriate for T ≥ Tc and introduced in Ref. [9]. Each term provides an ansatz for

a possible behavior of ρ(m̃l, λ) and results in a different contribution to the suscep-

tibility difference. In particular, ∆π,δ will receive three corresponding contributions:

∆π,δ ≈ 2c0 + 2c1 + πc2 ≡ ∆0
π,δ + ∆1

π,δ + ∆2
π,δ. (41)

Once the eigenvalue density has been computed and fit to the form assumed in

Eq. (40), the resulting coefficients can be used to calculate ∆π,δ and discover which

of these three behaviors gives the dominant contribution to the spectral integral.

In addition to allowing a quantitative measure of the relative importance of these

three possible behaviors, the use of the analytic expression in Eq. (40) also allows

us to potentially correct finite-lattice spacing errors which may be important for

small λ in our DWF formulation with finite Ls. Although much more accurate, the

hermitian DWF spectrum, like the Wilson spectrum, does not have the continuum

form Λ = ±
√
λ2 + m̃2 where m̃ = ml + mres, at least for finite volume, finite Ls

and non-zero lattice spacing. For eigenvalues Λ of DH on the order of mres, i.e.

Λ / 10 MeV, we expect deviations from the continuum ±
√
λ2 + m̃2 form because of

residual chiral symmetry breaking. These effects do not occur if we use ρ(λ) given by

Eq. (40). In fact, comparing results obtained by direct summation over the measured

spectrum with those obtained using Eq. (40) provides an estimate of the importance

of these finite lattice spacing errors.

Each of the three terms in Eq. (40) corresponds to potentially interesting behavior.

The λ-independent c2m̃ term is expected to dominate the behavior below Tc and

should describe the Banks-Casher contribution to the chiral condensate Σl. For
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T < Tc the factor of m̃ should not appear but has been introduced here because above

Tc the condensate should vanish in the limit m̃→ 0. As can be seen in Eq. (41), this

c2m̃ term will result in ∆l,s 6= 0 and anomalous symmetry breaking. Likewise, the

linear c1 term provides a possible mechanism for U(1)A symmetry breaking above

Tc. Both the c1 and c2 terms are sufficiently regular as λ and m̃ approach 0 that they

do not result in an explicit SU(2)L × SU(2)R symmetry breaking chiral condensate

but have sufficient infra-red singularity that the presence of either does result in a

non-zero value for χπ − χδ. Thus, either term in ρ(λ) could describe the behavior

we see for T > Tc where Σl should vanish as m̃l → 0 but χπ − χδ is non-zero. As we

will see, neither term appears to be present with a sufficient magnitude to describe

χπ − χδ for T > Tc.

As is discussed below, the c0 term has the greatest relevance. This term repre-

sents the Dirac spectrum that results from the dilute instanton gas approximation

(DIGA) [18]. Asymptotic freedom implies that at sufficiently high temperature, the

QCD partition function will be governed by weak-coupling phenomena. These should

include a “dilute gas” of instantons and anti-instantons of radius ≈ 1/T and density

∝ m̃2
l exp{−8π2/g2(T )} decreasing with increasing temperature, where g(T ) is the

running QCD coupling constant evaluated at the energy scale T . The number of

such instantons and anti-instantons is proportional to the volume and each will in-

duce a near-zero mode in the Dirac eigenvalue spectrum. (These eigenvalues will not

be exactly zero because of the overlap of the ‘zero’-mode wave functions associated

with neighboring instantons.) The factor of m̃2 in the instanton density arises from

the fermion determinant for two light flavors of quarks. The contribution of such a

dilute gas of instantons and anti-instantons to the Dirac spectrum will be accurately

described by the c0 term in Eq. (40), at least for sufficiently high temperatures. As

can be seen from Eq. (41), such a term will result in a non-zero value for the differ-

ence χπ − χδ even in the chiral limit, m̃l → 0. The expected presence of such effects
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leads to the phrase “effective restoration of U(1)A symmetry”, since these effects,

which should appear as T becomes very large, will lead to a possibly very small but

non-vanishing result of χπ − χδ.

As we will demonstrate in Sec. (IV D) we find a significant cluster of near-zero

modes in the Dirac spectrum whose number is proportional to the volume with the

characteristics expected from the DIGA. We conclude that the non-zero value of

χπ − χδ in the region just above Tc is explained by the DIGA and that this is the

dominant mechanism for our observed, non-zero breaking of U(1)A just above Tc.

B. Eigenvalue distributions

To compute the Dirac eigenvalue spectrum, we follow closely the method described

in detail in Ref. [9]. The lowest 100 eigenvalues {Λn}1≤n≤100 of the Hermitian DWF

Dirac operator DH are calculated for each of ≈ 100 configurations for each of six

ensembles ranging in temperature between 149 and 195 MeV using the Kalkreuter-

Simma method [30]. The same fermion mass is used in the Dirac operator as was

used when the ensemble was generated.

In the continuum, the eigenvalues Λn of the hermitian Dirac operator have the

form ±
√
λ2
n + m̃2

l and the eigenvalue density is conventionally expressed in terms of

the mass-independent eigenvalue λ. Here we will attempt to follow the same practice.

However, for the DWF Dirac operator, the quark mass is not a simple additive

constant but is embedded within DDWF in a complex fashion. The continuum form

±
√
λ2
n + m̃2

l is therefore not guaranteed by the structure of DDWF but is expected

to emerge in the limit of infinite volume, infinite Ls or vanishing lattice spacing

a. Thus, in our circumstances, we will find some eigenvalues Λn which are smaller

than m̃l and for which λn =
√

Λ2
n − m̃2

l will be imaginary. As in Ref. [9], when we

present a histogram showing ρ(λ) we include these imaginary values in a separate
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histogram plotted at negative λ with an imaginary value of λ added to a bin at −|λ|.

Plotted in this way, these “unphysical” values of Λ are made visible and their relative

importance can be judged. We exploit the symmetry between positive and negative

values of λ and associate each Λn with magnitude greater than m̃l with the positive

value λn = +
√

Λ2
n − m̃2

l .

Figure 7 shows the distributions, renormalized in the MS scheme at the scale

µ = 2 GeV, determined from the lowest 100 eigenvalues (λ) for six ensembles at

temperatures from 149 MeV to 195 MeV. The eigenvalue densities for the 323 × 8

space-time volumes are plotted as solid histograms, while the 163 × 8 results are

plotted as black, solid lines. The aforementioned imaginary, “unphysical” modes

are plotted as −
√
|Λ2 − m̃2

l | on the negative axis. The values for the total mass

of light and strange quarks, m̃MS
l and m̃MS

s , are indicated by vertical dashed lines,

which give a physical scale for the eigenvalue distribution. Since we have determined

only a fixed number of eigenvalues, the spectral distributions will be distorted at

their upper ends. The third vertical dashed line in these plots, which appears with

various x-coordinates, locates the smallest value for λ100 found for each ensemble.

The spectrum shown to the left of this line will then be undistorted by our failure

to include larger eigenvalues in the figure.

Since the number of eigenmodes is proportional to the space-time volume, a fixed

number of the lowest modes will become more concentrated at the lower-end of the

spectrum as the volume increases. This phenomena can be easily seen in Fig. 7 where

the range of eigenvalues studied decreases dramatically as the space-time volume is

increased from 163×8 to 323×8. However, while the range of eigenvalues covered by

the larger 323 × 8 volume is reduced, this larger volume provides a better sampling

and more convincing view of the spectrum near zero, the region of greatest interest.

For T = 149 and 159 MeV, the eigenvalue distributions can be characterized as

a linear function with a non-vanishing intercept for eigenvalues of order 10 MeV or
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FIG. 7. The eigenvalue spectrum for T = 149−195 MeV, expressed in the MS scheme at the

scale µ = 2 GeV. The imaginary, “unphysical” eigenvalues are plotted as −
√
|Λ2 − m̃2

l |.

The spectra from the 323 × 8 ensembles are plotted as histograms and fit with a linear

(T = 149 − 178 MeV) or a quadratic (T = 186 − 195 MeV) function (blue dashed line).

The spectrum from each of the 163 × 8 ensembles [9] is plotted as a black solid line.
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FIG. 8. (Left to right) The renormalized eigenvalue spectrum for T = 177 − 195 MeV

without the removal of the bare quark mass. The statistics are likely insufficient for 186

MeV on the 163 × 8 ensemble; only 5 instances of ”near-zero modes” are collected.

larger. Below 10 MeV the spectrum is distorted by a combination of finite volume

and residual chiral symmetry breaking effects. The non-vanishing intercept, inter-

preted through the Banks-Casher relation, is consistent with the non-vanishing chiral

condensate and vacuum chiral symmetry breaking observed at these temperatures

which lie below the pseudo-critical temperature.

For T = 168 MeV, the linear behavior continues to be visible, but the intercept

has essentially vanished, suggesting that 168 MeV is close to the pseudo-critical

temperature, consistent with the temperature dependence of the SU(2)L × SU(2)R-

breaking susceptibility difference χπ − χσ shown in Fig. 4.

For T = 177 MeV, a small peak in ρ(λ) near the origin emerges as a cluster of

near-zero modes. Such a cluster of near-zero modes might result from the Atiyah-

Singer theorem and non-vanishing topological charge or from the dilute instanton gas

approximation (DIGA). As is discussed below, the volume dependence of this peak

and the distribution of the chirality of these modes is consistent with the DIGA and

inconsistent with their arising from non-zero global topology. This small eigenvalue

region can be best seen in the expanded view given in Fig. 8.
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For T = 186 and 195 MeV, this small peak survives although it diminishes in size

with increasing temperature. In addition, the peak becomes increasingly separated

from the rest of the spectrum by a gap containing few eigenvalues. As a result the

remainder of the spectrum, excluding this peak, can no longer be fit using a linear

function. A quadratic fit is possible at T = 186 but an even higher power may be

needed to describe the 195 MeV spectrum.

C. Subtracted Chiral Condensate

It is not difficult to see very approximate agreement between the intercept of the

spectral density at λ = 0 (ignoring obvious distortions to the spectrum near λ = 0)

and the measured value of Σl implied by the Banks-Casher relation. However, a

careful, quantitative test of Eq. (36) must overcome two obstacles: both the finite

volume suppression of ρ(λ) as λ → 0 and the quadratic divergence present in Σq

for non-zero quark mass. For a DWF calculation such a test is further complicated

by the contributions of residual chiral symmetry breaking to Σq and ρ(λ) for small

λ. As suggested above, all of these difficulties can be overcome. The first step is

to consider the subtracted chiral condensate, ∆l,s defined in Eq. (4). If Eq. (36) is

used to express ∆l,s in terms of the spectral density, we obtain the more convergent

result:

∆l,s =

∫ ∞
0

dλρ(λ)
2m̃l(m̃

2
s − m̃2

l )

(λ2 + m̃2
l )(λ

2 + m̃2
s)
. (42)

While this expression still receives a contribution from large eigenvalues, well above

the group of low modes studied here, this high-mode contribution is expected to

be of order mlm
2
s ln(msa) which is possibly 1% of the (250MeV)3 value of the zero

temperature chiral condensate. Thus, we expect that for our present quark masses

and lattice spacing, we can evaluate the right hand side of Eq. (42) using our 100

low modes to at least a few percent accuracy, at least for T ≤ Tc.
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We can evaluate the integral in Eq. (42) using our measured eigenvalues in two

ways. First for each measured configuration we can replace the integral over λ on the

right hand side of Eq. (42) by a sum over the measured eigenvalues. In addition we

can express the integrand in Eq. (42) in terms of the directly measured eigenvalues

Λn so that the uncertainties associated with those values of Λn lying below m̃l are

avoided. The resulting expression for ∆l,s becomes

∆ms
l,s =

1

N3
σNτ

〈
100∑
n=1

m̃l(m̃
2
s − m̃2

l )

Λ2
n(Λ2

n + m̃2
s − m̃2

l )

〉
, (43)

where 〈. . .〉 indicates an average over configurations and we use the notation “ms”

(mode sum) to identify the result obtained from this summation over modes.

In the second approach to Eq. (42) we replace the spectral density ρ(λ) by the fit-

ted expression given in Eq. (40) and then perform the integration over λ analytically

with the result:

∆eig
l,s ≡ c0m̃l + c1m̃l ln

(
m̃2
s

m̃2
l

)
+ c2πm̃l, (44)

where terms of order m̃l/m̃s have been neglected and the label “eig” has been in-

troduced to distinguish this expression from those resulting from the three other

approaches to the calculation of this quantity.

In Tab. VI we compare these two spectral methods for computing ∆l,s with the

results from both the direct subtraction of the measured condensates (which we

continue to label as ∆l,s) and the improved quantity ∆̃l,s which is less contaminated

by residual DWF chiral symmetry breaking effects. As can be seen from the table, for

the temperatures at which the fit form given in Eq. (40) provides a good description

of the eigenvalue distribution, 139MeV ≤ T ≤ 168MeV, analytic integration of

this three-parameter function and the direct sum over the lowest 100 modes agree

reasonably well. This supports the use of the three-parameter function to provide an

interpretation of our results. This agreement also suggests that the region |Λ| / 10
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MeV, which is distorted in our computed Dirac eigenvalue spectrum by finite volume

and residual chiral symmetry breaking effects but treated in a fashion consistent with

infinite volume, continuum expectations by the fitting function, does not play a large

role in these results. The difference between ∆eig
l,s and ∆ms

l,s can serve as an estimate

for the systematic error in the fit coefficients, a difference which at its largest is about

15%.

A second observation that can be drawn from the data in Tab. VI is that the

quantity ∆̃l,s agrees reasonably well with the result obtained directly from the Dirac

spectrum over the full temperature range. This suggests that a good representation

for the chiral condensate can be obtained by performing the subtraction of light

and strange quark Green’s functions and that in the case of DWF it is best to

use the GMOR relation and subtract connected pseudoscalar susceptibilities rather

than the condensates themselves which contain relatively large, uncontrolled residual

chiral symmetry breaking effects. We would like to emphasize that our use of the

continuum spectral Eq. (40) combined with the renormalized DWF spectrum makes

strong assumptions about the validity of continuum methods in our lattice calculation

at reasonably strong coupling. It is impressive that on the larger 323 volume, where

the statistical errors are likely most reliable, Tab. VI shows agreement between ∆ms
l,s

and ∆̃l,s consistently at the 1 sigma level, which in some cases represent an accuracy

of 4% or less.

Finally we examine the results at T = 149 MeV where multiple ensembles with

different values of Ls are available, shown in the first four lines of Tab. VI. Here

results are shown for three values of Ls: 32, 48 and 64. As expected, the simple dif-

ference ∆l,s shows a very strong dependence on Ls. While there should be substantial

cancellation between the large, continuum-like modes in this difference, at the very

highest energies this cancellation will be distorted by residual chiral symmetry break-

ing effects. The use of the factor (ml + mres)/(ms + mres) in the subtracted strange
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# T (MeV) Nσ Ls m̃l m̃s ∆eig
l,s /T

3 ∆ms
l,s /T

3 ∆l,s/T
3 ∆̃l,s/T

3

15 149 16 32 0.00464 0.05293 6.72 6.00 3.07(12) 5.7(2)

16 149 16 48 0.00468 0.05295 6.85 5.65 5.00(10) 6.3(1)

16 149 16 64 0.00459 0.05289 - - 5.57(10) 6.2(1)

2 149 32 32 0.00464 0.05293 6.45 6.39 3.84(5) 6.4(1)

3 159 32 32 0.00421 0.04856 3.86 4.28 2.83(6) 4.2(1)

5 168 32 32 0.00395 0.04490 1.64 2.19 1.46(7) 2.3(1)

6 177 32 32 0.00367 0.04165 - 1.21 0.71(5) 1.3(1)

7 186 32 32 0.00341 0.03873 - 0.42 0.22(4) 0.46(5)

8 195 32 32 0.00314 0.03619 - 0.25 0.14(3) 0.30(6)

TABLE VI. Comparison of the unrenormalized results for ∆l,s computed using four dif-

ferent methods at various temperatures and values of Ls. The data in the 163×8, Ls = 64

row results from a valence calculation performed on the Ls = 48, β = 1.671 (run # 16) en-

semble. (While these quantities are all expressed in the scheme defined by the bare lattice

mass, mq, this is not the scheme in which the eigenvalues of the 5-dimensional DWF Dirac

operator are defined and renormalization using the factor Ztw→mf defined in Ref. [9] has

been carried out.)

condensate will not, in general, cause these effects to cancel. However, this argument

suggests that as Ls increases and these residual chiral symmetry breaking effects are

suppressed, ∆l,s should approach ∆̃l,s, behavior that can be seen in Tab. VI. Less

consistent is the apparent increase in the value of ∆̃l,s/T
3 with increasing Ls seen on

the 163 volume, where an increase by more than two standard deviation from 5.7(2)

to 6.2(1) is seen as Ls grows from 32 to 64. Since ∆̃l,s is supposed to already be

close to its Ls =∞ value such Ls dependence is not expected and we attribute this

discrepancy to the under estimation of statistical errors for this small, 163 volume.
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D. Near-Zero Modes and U(1)A Symmetry

We now turn to one of the central questions addressed in this paper, the origin

of the observed U(1)A symmetry breaking above Tc. We will focus on the quantity

∆π,δ = χπ−χδ since this difference of susceptibilites can be expressed in terms of the

spectral density using Eq. (39). Table VII shows this difference at six temperatures

as determined from the integrated connected Green’s functions. This difference con-

tains only a very small logarithmic singularity after multiplicative renormalization

by 1/Z2
mf→MS

in the continuum, ∼ (ml + mres)
2 lnmla, where the sum ml + mres

represents schematically the effects of both the input quark mass and DWF resid-

ual chiral symmetry breaking. This controlled high-energy behavior is realized by

the convergence of the integral in Eq. (39), even when ρ(λ) increases linearly or

quadratically with λ.

Therefore, in Tab. VII we also show the contributions to the spectral integral in

Eq. (39) of each of the three separate ansätze in Eq. (40), given in Eq. (41). Some

cells are left blank because the corresponding behavior cannot be seen in the spectral

data. For example, at T ≤ 168 MeV, there is no visible accumulation of near-zero

modes that might be described by a δ(λ) term in ρ(λ). However, at T ≥ 177 MeV

and above we can count a number of near-zero modes that form a small but visible

peak in ρ(λ) near λ = 0. Assuming a Poisson distribution, we take the square

root of the total number of these near-zero modes as a rough estimate of errors for

the corresponding contribution. Similarly the constant contribution or intercept has

vanished for T ≥ 177 MeV and above T = 177 MeV the linear term is also difficult to

determine and the eigenvalue density is dominated by what appears to be quadratic

behavior.

We can also determine the susceptibility difference ∆π,δ by using a direct sum over

modes as was done for ∆l,s in Eq. (43) and tabulated as ∆ms
l,s in Tab. VI. Examining
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the continuum spectral Eq. (39), we can write an expression for ∆π,δ analogous to

that in Eq. (43) for ∆l,s:

∆ms
π,δ =

1

N3
σNτ

〈
100∑
n=1

2m̃2
l

Λ4
n

〉
. (45)

The results from this mode sum are shown in the second column from the right in

Tab. VII where very good agreement is seen with the explicit difference of correlation

functions. This substitution of our renormalized DWF eigenvalue spectrum directly

into the continuum equation for ∆π,δ is a stringent test of that spectrum. The infra-

red singular factor 1/Λ4
n appearing in Eq. (45) might have shown large, unphysical

fluctuations associated with configuration-by-configuration fluctuations in residual

chiral symmetry breaking. In fact, it is possible that the larger values shown in

Tab. VII for ∆ms
π,δ relative to the actual correlator difference ∆π,δ at the two lowest

temperatures are a result of this effect. However, overall the agreement between ∆ms
π,δ

and ∆π,δ is remarkably good.

The separate contributions to ∆π,δ presented in Table VII give a clear, quanti-

tative description of how the contribution of each piece evolves as the temperature

increases. For T ≤ Tc, the constant, or Banks-Casher term, gives the major contri-

bution to ∆π,δ. In contrast, in the region above the pseudo-critical temperature, the

delta function term dominates and its contribution alone agrees well with the result

from the difference of integrated correlators. We conclude that the non-zero U(1)A

symmetry breaking that we observe above Tc in the correlator difference χπ − χδ

results from this small cluster of near-zero modes which can be seen in the spectral

distributions shown in Fig. 7 for T = 177, 186 and 195 MeV and more easily in the

expanded plots in Fig. 8.

It is possible that these near-zero modes become exact zero modes in the con-

tinuum limit and are a result of non-zero global topology and the Atiyah-Singer

theorem. If this is the case, the number of these zero modes should increase in pro-
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portion to
√
V with increasing space-time volume. Thus, for zero modes resulting

from non-zero global topology we expect the corresponding density per space-time

volume to be proportional to 1/
√
V . Were such exact zero modes the only contri-

bution to U(1)A symmetry breaking then we would conclude that U(1)A symmetry

will be restored in the limit of infinite volume.

However if we compare the results for 323 (solid red histograms) and 163 (black

lines) in the expanded view of these peaks shown in Fig. 8 2 for T = 177, 186 and

195 MeV, we easily see that the density is volume independent, instead of shrinking

by a factor of
√

8 as the volume is increased from 163 to 323. Thus, the volume

dependence of these near-zero modes corresponds to what is expected if they result

from a relatively dilute gas of instantons and anti-instantons whose number, and

whose corresponding near-zero modes, will grow proportional to the volume.

We have also examined the chirality of these near-zero modes. In particular, if

these modes are the result of non-zero global topology, then, for a single configuration,

all these modes should be of the same chirality, that of the global topological charge

ν. If ν is positive then each of the zero modes should be right-handed and in our DWF

case have support primarily on the right-hand, s = Ls− 1 boundary. If ν is negative

then all modes should be left-handed and their wave functions should be largest

on the left-hand, s = 0 boundary. In contrast, if these modes arise from a dilute

instanton gas, they are produced by a mixture of instantons and anti-instantons and

the chirality of each mode should have an equal probability to be either positive or

negative within a single configuration.

We choose the T = 177 MeV ensemble to study the chirality of the near-zero

modes since it has the most near-zero modes among the three highest temperature

ensembles, where these modes are seen. We did not save the full five-dimensional

2 Here we use the distributions of Λ instead of λ near the origin, since it allows us to ignore the

large relative fluctuations in these small eigenvalues below m̃l.
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eigenfunctions when computing the lowest 100 modes and have available only values

for the squared modulus of the five-dimensional wave function, integrated over the

left- and right- hand wall for each mode. Therefore we define the chirality of the nth

mode as

χn =

∫
d4xΨn(x, 0)(1 + γ5)Ψn(x, 0)−

∫
d4xΨn(x, Ls − 1)(1− γ5)Ψ(x, Ls − 1)∫

d4xΨn(x, 0)(1 + γ5)Ψ(x, 0) +
∫
d4xΨn(x, Ls − 1)(1− γ5)Ψ(x, Ls − 1)

(46)

which compensates for the fact that even for a chirality eigenstate, the five-dimensional

wave function will not be localized solely on one of the four-dimensional walls but

will spread into the fifth dimension. If we examine the zero modes, we find that

some of them have chiralilty near zero. This might be expected for a not-too-dilute

instanton gas where the two modes of a nearby instanton-anti-instanton pair will

mix so that neither have a definite chirality, However, such behavior could also be

the result of our strong coupling and gauge configurations with changing topology

producing zero modes of uncertain chirality. As a result we choose to examine only

those near-zero modes whose chirality is greater than 0.7 in magnitude. The effects of

this choice choice can be seen in Fig. 9 where we plot the histogram of the near-zero

modes for T = 177, 186 and 195 MeV. It appears that at these temperatures, almost

all of the near-zero modes are localized on one of the two four-dimensional walls and

thus have a chirality very close to +1 or -1. Our restriction that the magnitude of

the chirality is greater than 0.7 captures approximately 95% of the near-zero modes.

Figure 9 suggests that this concentration of chirality at ±1 increases with increasing

temperature. Determining whether this apparent trend is the result of i) limited

statistics at the higher temperatures, ii) increasing spatial localization of the zero

modes and therefore less mixing as T increases or iii) better defined gauge field

topology at weaker coupling requires further study.

Table VIII lists the number of configurations which have N0 near-zero modes, N+
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FIG. 9. (Left to right) The distribution of chiralities for the near-zero modes at the three

temperatures T = 177, 186 and 195 MeV and the 323× 8 volume. Here we only use modes

lying in the first four histogram bins in Fig. 8 which corresponds to Λ . 12.5 MeV.

of which have positive chirality. Those modes included in the counts presented in

Tab. VIII must lie in the peak region (first four bins) shown in Fig. 8, with Λ at

or below approximately 12.5 MeV and with a chirality of magnitude 0.7 or greater.

A binomial distribution consistent with the DIGA describes the data in a more

convincing way than the bimodal distribution that would be seen for the exact zero

modes resulting from non-zero global topology.

We conclude that the agreement between the value of ∆π,δ measured from the

difference of correlators and the delta-function contribution ∆0
π,δ shown in Tab. VII

implies that the anomalous breaking of chiral symmetry for T > Tc results from

these near-zero modes. Further, the volume dependence and chirality distribution of

the modes making up this delta-function contribution gives strong evidence that the

non-zero anomalous symmetry breaking found above Tc is the result of a dilute gas of

instantons and anti-instantons and that no new mechanism of anomalous symmetry

breaking is needed.
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# T (MeV) β m̃l Ncfg ∆0
π,δ/T

2 ∆1
π,δ/T

2 ∆2
π,δ/T

2 ∆ms
π,δ/T

2 ∆π,δ/T
2

2 149 1.671 0.00464 158 - 3.7(3) 76(2) 109 87(2)

3 159 1.707 0.00421 109 - 4.6(1) 42(1) 70 60(2)

5 168 1.740 0.00395 83 - 4.9(1) 11(1) 35 35(2)

6 177 1.771 0.00367 170 23(1) 5.0(1) - 25 23(2)

7 186 1.801 0.00341 171 8(1) - - 8 6(1)

8 195 1.829 0.00314 76 7(1) - - 6 6(2)

TABLE VII. A comparison of ∆π,δ measured from the difference of correlation functions

with the three contributions computed from fitting the eigenvalue density to the expression

in Eq. (40) and with the result ∆ms
π,δ obtained from the mode sum given in Eq. (45), for

the 323 × 8 ensembles. All results are renormalized in the MS(µ = 2GeV) scheme.

V. CONCLUSIONS

We have extended earlier finite temperature QCD studies [9] from 163×8 to larger

243×8 and 323×8 volumes, all performed using a 200 MeV pion mass and the chiral,

DWF lattice action. Significant dependence on volume is seen for both the chiral

condensate, Σl, and the disconnected chiral susceptibility, χdisc, for temperatures

below Tc. Most dramatic is the large decrease in χdisc below Tc as the volume is

increased from 163 to 243 and 323 which is shown in the left panel of Fig. 5. Without

data at one or more additional values of the light quark mass, we are unable to

make a proper comparison of this finite volume dependence with the predictions

of O(4) universality. However, on a qualitative level this behavior is predicted by

finite-volume O(4) scaling [14] and was anticipated by the results given in Ref. [16].

Here a model calculation is presented using renormalization group methods applied

to a theory including fundamental quarks, gluons and mesons. Since the volume
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N+\N0 0 1 2 3 4 5

N0 = 1 40 29 - - - -

N0 = 2 11 20 12 - - -

N0 = 3 3 11 6 2 - -

N0 = 4 0 1 2 1 0 -

N0 = 5 0 2 0 0 0 0

TABLE VIII. The number of configurations found in the 177 MeV (run # 6) ensemble

with given values for the total number (N0) of near-zero modes and total number (N+)

of those modes with positive chirality. We consider only modes with Λ ≤ 12.5 MeV and

a chirality whose magnitude exceeds 0.7. The distribution is clearly different from the

bimodal distribution N+ = N0 or 0 expected if these near-zero modes were induced by

non-zero global topology and the Atiyah-Singer theorem.

dependence of this theory should be consistent with O(4) universal behavior, the

results in Ref. [16] can be viewed as a prediction of O(4) universal finite volume

behavior which is now evident in our lattice calculation. We expect to make a

quantitative comparison with finite volume O(4) scaling when the HotQCD 323 × 8

and 643 × 8, mπ = 135 MeV data can be included in the analysis.

A second result presented here is the observation of non-vanishing U(1)A sym-

metry breaking above Tc and its quantitative connection to the density of near-zero

Dirac eigenvalues. The volume dependence of these near-zero modes and the failure

of their chiralities to be correlated per configuration matches precisely the expecta-

tion of the dilute instanton gas approximation. This might also be called the dilute

caloron gas approximation if we recognize the finite temperature distortions that are

expected for instantons at finite temperature whose space-time extent approaches

the length 1/T [31–35]. (For a thorough review of the subject of instantons in QCD,
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including their effects at finite temperature, see Ref. [36].) While more study of

the space-time structure of these zero modes is required to completely establish this

picture of U(1)A symmetry breaking, our results are all well-explained by this mech-

anism.

The possible U(1)A symmetry breaking above Tc was recently analyzed theoret-

ically by Aoki, et al. using a lattice regularization, based on overlap fermions [37].

We also refer the reader to this paper for a discussion of and references to earlier the-

oretical work on the question of U(1)A symmetry breaking above Tc and its relation

to the Dirac eigenvalue spectrum. Among the conclusions of Ref. [37] is that χπ−χδ
vanishes in the limit of infinite volume and vanishing quark mass for T > Tc. We

have found a non-zero value for χπ − χδ on the smallest, 163 volume which becomes

larger when the volume was increased eight-fold to 323. While we have examined

only a single quark mass, we believe that this mass is sufficiently small as to be

a good approximation to zero. We believe this to be the case because the explicit

SU(2)L × SU(2)R symmetry breaking effect of the quark mass on the difference

(χπ −χδ)− (χσ −χη) is significantly smaller than the scale of χπ −χδ. (We are now

studying a second, smaller mass to test this assertion.) However, our results and

the arguments presented in Ref. [37] can be made consistent if those arguments are

reversed to conclude that the analyticity in m̃2
l assumed above Tc in Ref. [37] is not

present.

There is also a potential conflict between our results and the conclusions of a

recent 2-flavor study of Cossu, et al. [13] on a 163×8 volume using overlap fermions.

Reference [13] reaches the conclusion that there is a gap in the Dirac eigenvalue

spectrum and degeneracy between the π and δ correlators above Tc. However, the

numerical evidence supporting their conclusion is strongest at relatively high tem-

peratures where our results also show few small Dirac eigenvalues and small (but

significant) results for χπ−χδ. Given our larger volumes and our smaller light quark
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mass, which is fixed in physical units, it is possible that the small effects which we

are able to extract may not be visible in this first overlap study.

Especially interesting is the failure of this overlap calculation to see the small

peaks in the Dirac spectrum near λ = 0 found in our DWF work. As is pointed

out by Cossu, et al., residual chiral symmetry breaking in a DWF calculation does

distort the small eigenvalue region. However, while this distortion may shift individ-

ual eigenvalues by a few MeV, it is not expected to create near-zero modes that are

not present in the continuum theory. Our detailed comparisons of the predictions

of spectral formulae with the improved chiral condensate suggest that the averaged

features of the Dirac spectrum, even for λ ∼ 1 MeV, are accurate. We believe that

this absence of a near-zero mode peak in the overlap data has at least two possi-

ble explanations. First since the size of these peaks is very temperature dependent,

even a 10% underestimate of the energy scale for the overlap relative to the DWF

simulation could explain their absence in the former. Second, the elimination of

topology change in the overlap simulation results in a non-ergodic evolution algo-

rithm which may distort the thermal distribution of near-zero modes, especially at

weaker couplings and smaller dynamical quark masses, in spite of the evidence to

the contrary.

The study of 163, 243 and 323 volumes in this work gives us a good understanding

of the effects of finite volume and a very interesting opportunity to compare with the

predictions of O(4) universality. By working at relatively small light quark mass on a

line of constant physics (mπ = 200 MeV), we believe that the effects of explicit chiral

symmetry breaking present are small and that the evidence for anomalous symmetry

breaking just above Tc ≈ 160 MeV is strong. This symmetry breaking decreases

rapidly as the temperature grows making the signal difficult to see at our highest

temperature, 196 MeV. The study of the Dirac eigenvalue spectrum suggests that this

U(1)A symmetry breaking results from near-zero modes whose characteristics match
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well with those predicted by the dilute instanton gas approximation. However, it

is important to verify this picture by extending the investigation to even smaller

light quark mass and larger volumes. Calculations currently being carried out by the

HotQCD collaboration on 323 × 8 and 643 × 8 volumes with mπ = 135 MeV should

resolve these remaining uncertainties.
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